HPK

Thursday, January 1, 2015

X Real Number MCQ Assignments in Mathematics Class X (Term I)




X Real Number MCQ  Assignments in Mathematics Class X (Term I)
 1. Euclid’s division algorithm can be applied to :
(a) only positive integers            (b) only negative integers
(c) all integers                            (d) all integers except 0.
 2. For some integer m, every even integer is of the form :
(a) (b) + 1 (c) 2(d) 2+ 1
3. If the HCF of 65 and 117 is expressible in the form 65– 117, then the value of is :
(a) 1 (b) 2 (c) 3 (d) 4
4. If two positive integers and can be expressed as p = aband a3babeing prime numbers, then LCM (p, q) is :
(a) ab (b) a2b(c) a3b(b) a3b3
5. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is :
(a) 10 (b) 100 (c) 504 (d) 2520
6. 7 × 11 × 13 × 15 + 15 is :
(a) composite number                 (b) prime number
(c) neither composite nor prime  (d) none of these
7. 1.23 is :
(a) an integer (b) an irrational number (c) a rational number (d) none of these
8. If two positive integers and can be expressed as p = ab2 and q = a2babeing prime numbers, then LCM (p, q) is :
(a) a2b2 (b) ab (c) ac3b(d) a3b2
9. Euclid’s division lemma states that for two positive integers and b, there exist unique integers and such that a = bq + r, where :
(a) 0 < ≤ (b) 1 < r < b (c) 0 < r < b (d) 0 ≤ r < b
10. 3.24636363... is :
(a) a terminating decimal number (b) a non-terminating repeating decimal number
(c) a rational number                    (d) both (b) and (c)
11.(n + 1)2 – 1 is divisible by 8, if is :
(a) an odd integer (b) an even integer (c) a natural number (d) an integer
12. The largest number which divides 71 and 126, leaving remainders 6 and 9 respectively is :
(a) 1750 (b) 13 (c) 65 (d) 875
13. For some integer q, every odd integer is of the form :
(a) 2(b) 2q + 1 (c) (d) q + 1
14. If the HCF of 85 and 153 is expressible in the form 85– 153, then the value of is :
(a) 1 (b) 4 (c) 3 (d) 2
15. According to Euclid’s division algorithm, HCF of any two positive integers and with ais obtained by applying Euclid’s division lemma to and to find and such that =bq r, where must satisfy :
(a) 1 < r < b (b) 0 < r < b (c) 0 ≤ r < b (d) 0 < ≤ b

No comments:

Post a Comment